Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8567-8575, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38489761

RESUMEN

Ferroptosis as a promising method of cancer treatment heavily relies on the intracellular iron ion level. Herein, a new iron-supplement nanodrug was developed by conjugating transferrin-homing peptide T10 on the surface of cross-linked lipoic acid vesicles (T10@cLAV), which could hijack blood transferrin (Tf) and specifically deliver it to tumor cells to elevate the Fe2+ level. Meanwhile, the intracellular degradation product of cLAV, dihydrolipoic acid, could regenerate Fe2+ to further boost the ferroptosis. The results disclosed that T10@cLAV achieved tumor inhibition comparable to that of cisplatin at a dose as low as 5 mg/kg in the HeLa tumor-bearing nude mice model and caused no toxicity at the dose up to 300 mg/kg. This tactful iron-supplement strategy of hijacking blood Tf is superior to the current strategies: one is the induction of intracellular ferritin degradation, which is limited by the low content of ferritin, and the other is the delivery of iron-based materials, which easily causes adverse effects.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Ratones , Animales , Transferrina/metabolismo , Ratones Desnudos , Hierro/metabolismo , Ferritinas , Nanopartículas/química
2.
Poult Sci ; 103(4): 103554, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401225

RESUMEN

Heat stress (HS) causes oxidative damage and abnormal metabolism of muscle, thus impairing the meat quality in broilers. Selenium is an indispensable element for enhancing antioxidant systems. In our previous study, we synthesized a novel type of biogenic selenium nanoparticles synthesized with alginate oligosaccharides (SeNPs-AOS), and found that the particle size of Se is 80 nm and the Se content is 8% in the SeNPs-AOS; and dietary 5 mg/kg SeNPs-AOS has been shown to be effective against HS in broilers. However, whether SeNPs-AOS can mitigate HS-induced the impairment of thigh muscle quality in broilers is still unclear. Therefore, the purpose of this study was to investigate the protective effects of dietary SeNPs-AOS on meat quality, antioxidant capacity, and metabolomics of thigh muscle in broilers under HS. A total of 192 twenty-one-day-old Arbor Acres broilers were randomly divided into 4 groups with 6 replicates per group (8 broilers per replicate) according to a 2 × 2 experimental design: thermoneutral group (TN, broilers raised under 23±1.5°C); TN+SeNPs-AOS group (TN group supplemented 5 mg/kg SeNPS-AOS); HS group (broilers raised under 33 ± 2°C for 10 h/d); and HS + SeNPs-AOS group (HS group supplemented 5 mg/kg SeNPS-AOS). The results showed that HS increased the freezing loss, cooking loss, and malondialdehyde (MDA) content of thigh muscle, whereas decreased the total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities, as well as downregulated the mRNA expression of SOD2, CAT, GPX3, nuclear factor erythroid 2-related factor 2 (Nrf2), selenoprotein S (SELENOS), solute carrier family 7 member 11 (SLC7A11), GPX4, and ferroportin 1 (Fpn1) of thigh muscle (P < 0.05). Dietary SeNPS-AOS reduced the b* value, elevated the pH0min value and the activities of T-SOD, GSH-Px, glutathione S-transferase (GST) and the mRNA expression levels of GSTT1, GSTA3, GPX1, GPX3, ferritin heavy polypeptide-1 (FTH1), and Fpn1 of thigh muscle in broilers under HS (P < 0.05). Nontargeted metabolomics analysis identified a total of 79 metabolites with significant differences among the four groups, and the differential metabolites were mainly enriched in 8 metabolic pathways including glutathione metabolism and ferroptosis (P < 0.05). In summary, dietary 5 mg/kg SeNPs-AOS (Se content of 8%) could alleviate HS-induced impairment of meat quality by improving the oxidative damage, metabolic disorders and ferroptosis of thigh muscle in broilers challenged with HS. Suggesting that the SeNPs-AOS may be used as a novel nano-modifier for meat quality in broilers raised in thermal environment.


Asunto(s)
Ferroptosis , Selenio , Animales , Antioxidantes/metabolismo , Selenio/metabolismo , Pollos/fisiología , Muslo , Suplementos Dietéticos/análisis , Músculo Esquelético , Respuesta al Choque Térmico , Superóxido Dismutasa/metabolismo , Carne/análisis , ARN Mensajero/metabolismo , Alimentación Animal/análisis
3.
Antioxidants (Basel) ; 12(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38136152

RESUMEN

Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, ß-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers.

4.
Food Funct ; 14(1): 94-111, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484332

RESUMEN

The effects of dietary supplementation with citrus flavonoid extract (CFE) on milk performance, rumen fermentation, rumen microbiome, rumen metabolome, and serum antioxidant indexes were evaluated. Eight multiparous lactating cows were allocated to a replicated 4 × 4 Latin square with 25-d periods consisting of 20 d of adaptation and 5 d of sampling. Experimental treatments included a control diet (CON) and CON supplemented with 50 g d-1 (CFE50), 100 g d-1 (CFE100), and 150 g d-1 (CFE150). Feeding CFE to dairy cows increased milk production and milk lactose. Milk somatic cell count linearly reduced with increasing CFE amount. Supplementing CFE linearly increased the ruminal concentrations of total volatile fatty acids, acetate, propionate, butyrate, and microbial crude protein. Ruminal lipopolysaccharide linearly decreased with increasing CFE amount. Compared with CON, CFE150 cows exhibited a greater abundance of Firmicutes and a low abundance of Bacteroidetes. Cellulolytic bacteria (genera Ruminococcus, Clostridium, and Butyrivibrio) and carbohydrate metabolism were enriched in the CFE150 cows. For archaea and viruses, major methanogens (genera Methanobacterium and Methanosarcina) and phylum Uroviricota were inhibited in the CFE150 cows. Compared with CON, the ruminal concentrations of tyrosine, proline, pyruvate, glucose, and glucose-6-phosphate were higher in the CFE150 cows. The metabolites of citrus flavonoids, such as hippuric acid, hesperetin, and naringenin, were increased in the CFE150 cows. Supplementing CFE significantly improved the antioxidant capacity of the dairy cows. This study highlighted that dietary supplementation with CFE led to significant changes in the rumen microbial composition and metabolites, and consequently resulted in an improved lactational performance of dairy cows.


Asunto(s)
Lactancia , Microbiota , Femenino , Bovinos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Rumen/metabolismo , Rumen/microbiología , Leche/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Flavonoides/farmacología , Flavonoides/metabolismo , Extractos Vegetales/farmacología , Fermentación , Alimentación Animal/análisis , Digestión
5.
Biomed Chromatogr ; 32(12): e4374, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30141275

RESUMEN

Kidney stone disease is a worldwide metabolism-associated disorder with a high incidence of renal dysfunction. However, effective methods to prevent crystalline nephropathy are still lacking owing to the absence of aetiological research. Shen'an (SA) capsules are prepared from Chinese medicinal compounds and are considered a promising treatment for the prevention of crystal-induced renal injury. In this study, 24 mice were randomly divided into four groups: saline, oxalate, SA-treated (via preventive administration) and SA-only groups. A metabolomics analysis based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to explore the plasma metabolic profiles among the different groups. The amount of crystal deposition and the decline in kidney function were significantly alleviated by the use of SA capsule. A total of 24 metabolites that showed a reversal trend following SA capsule administration were identified as plasma biomarkerss of the preventive effects of SA capsules on crystal-induced renal injury. Most of these metabolites were involved in the metabolisms of lipid metabolism, energy metabolism, glutathione metabolism and vitamin metabolism. In conclusion, SA capsules exert a preventive effect in mice with crystal-induced kidney injury via the regulation of multiple metabolic pathways.


Asunto(s)
Oxalato de Calcio/toxicidad , Medicamentos Herbarios Chinos/farmacología , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Cromatografía Líquida de Alta Presión , Enfermedades Renales/patología , Masculino , Metaboloma/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA